Implications of laser-doping parameters and **contact opening size on contact resistivity** Jonas D. Huyeng^{1,2,*}, Marco Ernst¹, Kean Chern Fong¹, Daniel Walter¹, and Andrew Blakers¹ ¹Centre of Sustainable Energy Systems, Australian National University, Canberra, ACT 2600, Australia (*marco.ernst@anu.edu.au) ²Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstrasse 2, 79110 Freiburg, Germany

Derivation of an ohmic local contact analysis (OLCA) to determine the contact resistivity of localized contacts with simple sample structure

Motivation

D Localized contacts

Important for advanced cell structures • Cannot be measured by transfer length method (**TLM**)

Numerical simulation

• Quokka 3 simulation of ohmic structures

• Alternative method to determine contact resistivity ρ_c : **OLCA**

Sample fabrication

• Localized contacts with laser processing (Excimer laser) • Laser doping (LD): varying **fluence** and **size** • Laser contact opening (LCO): adjusting size • Boron (B) and Phosphorus (P) dopant sources

Microscope image illustrating the variation of laser-doping size (variable aperture) after laser-contact opening confined to a region smaller than the laser-doped areas.

• Parameter sweeps to determine critical parameters ρ , **x**

Contact resistivity

- Initial set of simulations
- **2** Compare R(N) measurements and simulation results
- **B** Perform additional **simulations**

- **Localized contact** polarity = **base** polarity
- Large-area laser doping (stitched spots) to measure Sheet resistivity R_{\Box} (4PP) **Oppoint profile** n(z) (ECV)
- \bigcirc LPCVD Si₃N₄ for surface passivation
- **PVD** aluminium for electrode metallization

in relevant range

- Consistency check
 - Determine ρ_c only for spot size $s = 30 \,\mu\text{m}$
 - Simulate all other spot sizes
 - Plot measurement (data) and simulation (**no fit**)

After forming gas anneal, 300 °C:

	Boron		Phosphorus	
Fluence <i>\phi</i>	R _	$ ho_{C}$	R _	$ ho_{C}$
(J/cm ²)	(Ω/□)	(m Ω cm ²)	(Ω/□)	(m Ω cm ²)
1.3	97 ± 9	0.42	186 ± 20	0.35
2.1	36 ± 4	0.04	60 ± 7	0.07

Sketch of the sample structure: Localized contacts are placed collinearly and equidistant under electrodes with defined spacing.

Conclusion

• OLCA method was successfully applied

Example 2 Localized contacts with PVD AI show low $\rho_c < 0.1 \text{ m}\Omega \text{ cm}^2$

• Comparable to similar large area dopings (TLM)

Method can be applied to other fabrication methods, such as screen-printed metallization

This work has been supported by the Australian Government through the Australian Renewable Energy Agency (ARENA). Responsibility for the views, information or advice expressed herein is not accepted by the Australian Government

Conference Photovoltaic Energy Conversion (WCPEC-7) JUNE 10-15, 2018 WAIKOLOA, HAWAII

Download the poster and paper under

http://users.cecs.anu.edu.au/~marco.ernst/

